买篮彩用什么app :CIMSՓĵ

򾺲 www.fasfz.com  

YɿԷą^g

ע⣺Փڡ˄---12ȫѽYWhՓČ݋244-247. 20029,_.l
ʹՈעՓij̎

DŽ
ͬW ϵϺ200092

 

ժҪеIJ_ԿԷքeSCģͅ^gģIJÅ^gв_ԵĽYڅ^gW֪RһNµĿɿȶwϵͷ]Č򞔵@ýYĸܶȺ`ٶȺr@NȻڸՓģWĿɿȷm˿˷ֱӲÅ^gӋ㷨tӋY܅^grӋYڔUĆ}ѽYܺӋDɂ}քe_ֵܺһNȫ֌㷨az㷨DMķĿԺЧMC
PI~Yɿ^g^gWz㷨Ǹʵ

 

Interval method for structural reliability analysis

 

Wang Denggang , Li Jie 
Department of Building Engineering, Tongji University, Shanghai, 200092,China

Abstract: The imprecision or uncertainty present in many engineering problem can be modeled using probabilistic, fuzzy, or interval methods. By representing the uncertain structural parameters as interval numbers, a new measure and analysis methodology for structural reliability computation is put forward in this paper, which is based on the theories of interval mathematics. The priori probability density function or subjective function of the structural parameters is not needed in this methodology. So it is more suitable than probabilistic and fuzzy approach when there is no sufficient experimental data to obtain these functions. Overestimation is a major drawback in interval computations. In order to overcome this drawback, the structural functional function was calculated by using of two optimization problems to obtain its lower and upper bounds respectively. Moreover, an intellective algorithm named as real-code genetic algorithm was introduced to locate the global optima of the two optimization problems. Examples show that the presented method is feasible and efficient.
Key Words: structural reliability; interval analysis; interval mathematics; genetic algorithms; non-probabilistic

1g[PDFʽȫҪʹܛAbode Acrobat(ܛ^󲢳Ҋ,վṩd)

2dՓȫՈc(41KB)

 

1

     ڸʵĿɿԷܵҕ䃞cͬrһЩ÷IJ[1-3]YʿɿԌyӋ׃ͷֲ͵xܺҪ^Ĕʴ__SC׃ĽyӋƽֵSC׃ķֲںܶ๤r¿ɵõĔ޵ƵģɿԷҲҪĔ_PY`ٶȺҲ@ӵĆ}˱@ЩײͲڻɫϵyՓĿɿԷ[2-3]ͻڅ^gķǸʿɿԷ[4-7]ܵһЩWߵҕ
ע⵽ںܶHrMܲ׵õ_Ĝʴ_ʷֲ`ٶȺǷǴ_ķȻfڴ_īI[4-7]ԓǶȳlɿԷą^gMоīI[4]͹Փ˷ǸʿɿԵĸīI[5]ᘌ˸ӑՓһNܵĶīI[6]ϵySIJ_Ե̶ȶɿīI[4-6]ʹò_Ե͹ģJ˲üģյϢ^ٵķǴ_īI[7]tڅ^g㷨ǸʿɿԵһNµĶǫI[7]HڽYOӋro˿ɿȵĶxʽҟoڅ^g\㷨tĶxą^gӋYڔUĆ}_Ӌ߀дMһо
IJÅ^gв_ԵĽYڔWϵą^gÅ^g\㷨tͅ^gʽĸoһNcīI[7]ͬĿɿȶxʽ^gӋYUӋ㷽oˌӋ

2 ^gWP֪R <ʡҪȫՈd>


6 YZ

ăHnj^gɿȷijоÅ^g_Yڅ^gʽĸȅ^gW̽ӑһNµĿɿԶһNֱӲÅ^g\㷨tӋYڔUą^gܺӋ㷽ĶѷǴ_ԵĿɿԷ}ȫD_Եă}MǴ_ĸʷֲ`ٶȺoʴ_õrķĿɿԷOӋṩһNɹxĿܷ

I

[1]. Sexmith R G. Probability-based safety analysisValue and drawbacks. Structral Safety, 1999, 21:303-310.
[2].
森CеɿԵĻɫϵyЄeCе̌W199228(5): 102-108
[3]. ФެaɫɿԷ䑪õоch2001(1): 38-42
[4]. Ben-Haim Y. A non-probabilistic concept of reliability. Structural Safety, 1994, 14(4): 227- 245.
[5]. Elishakoff I. Discussion on: a non-probabilistic concept of reliability. Structural Safety, 1995, 17(3): 195-199.
[6]. Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Structural Safety, 1995, 17(2): 91-109.
[7].
TԪڅ^gĽYǸʿɿģͣӋWW200118(1): 56-60
[8]. cPĪȺǾԷ̽MĔֵⷨƌW1999
[9]. Alefeld G, Claudio D. The basic properties of interval arithmetic, its software realizations and some applications. Computers and Structures, 1998, 67:3-8.
[10].
DŽ, . Ӌ㲻_YϵyoB푑һNɿ. ӋWW, ()
[11]. Michalewicz Z. Genetic Algorithm+Data Structures=Evolution Programs. Springer-Verlag, Berlin Heidelberg. 1992, 1994, 1996

[ߺ]
DŽ19702001ڴBW@WʿWλFͬWľ̲ʿվ
19571988ͬW@WʿWλFͬWϵʿ


վ䛵ıߵՓģ

1A relialble approach to compute the forward kinematics of robot with uncertain geometric parameters

2Ǿ}һNϽⷨ

3ӅReо

4ⲻ΢һNz㷨

5rʼ͏ģą^gݷ

PՓՈcվ<<<վȫ>>>

gӭӑՓlՓļоIĿ
(Ոڰlԕrژ}ʹcuՓĵ}Ŀо@ӷҞg[)

| CIMSՓ | й | ̓M | | Փ | Ŀ_l | WgYԴ | վȫ | MՓľWվȫ |

line.gif (4535 ֹ)

˸õĞҷgӭӱվͶƱ{

򾺲 Ոc

վ򾺲 gӭL

ע⣺վδSDd

All rights reserved, all contents copyright 2000-2019
վ20003¿WL