篮球竞彩游戏规则 :CIMSՓĵ

򾺲 www.fasfz.com  

ӅReо

ע⣺Փˮl늡 2001,(2)17-19.l
ʹՈעՓij̎

DŽ, ӭؾ

BW Wϵ| B116024

 

ժ  ҪĻƽՓslĻ΄ӑBReģԓģ͵ļs׃߶ȷijοՎΞ^yȫėlĄӑBυReMпReYķH^ߵӋ㾫ȺõĔֵҾһƔֻһAAlʺ̶ׂ͎c̎һA^yrԿɿRewͻArʯĄӏģĶRew͎rʯAԳṩһlµЧ;

PI~ӅRes׃߶ȷ

̖TU311.3O39

1

       wԅǴΰȫOyʹοֵģMвȱٵҪڴΰȫɿuԼSoͼӹҪ÷ݷ_w^Чԅķܵ˂ҕ[1-4]оÉwoB^yλƁ_wĄtӅReĽǶģB^yRew͎rʯAӏԅĿǰ}ӷyYl͵ļg՝u[5]ܶΣSMˮ[6]ԓMԭ͌yˉwlͲډ픺ͻA^ycֵ@ЩFČyY@Щ򞔵RewcAĄӏԳwԷҪČHúͅrֵÄyԇReYӑBо^[7-9]ڴеđо߀rЈο򞔵Ǻ޵޵DzȫĄyԇϢReYȻǽYReҪn}

       ڹlʺ^y]ϢĽmһYӅReӋģģo˼s׃߶ȷԓģ͵Ӌ㲽EHijεĵһAlʺ^yRew͎rʯAӏģYfñⷽ޿򞔵RewͻAĄӏģǿЧ

2ӅReģ͵Ľ

2.1 ӅReһՓ

Y?~ϙnĹᅵʺ͹?Ԫ̣1Q

               (1)

ʽУ DŽ ǽY| ӋˮcY໥õˮw| Aֵ nj  ǽYAwϵĿɶȔ?RΪ?/span>[10]ڌHrɶ ^ֻҪǰAlʺIJAġֱӞVl(1)ԓӋСȸߵȃc

       ReĿǴ_ еĴ׃ ʹðշ̣1ӋĹl ͹ cĜyֵ քeһ

2.2 ӅReӋģ

     ]^yĿ^@ƽ[11]ĸx}Ľ׃ ڝM㷽̣1ǰԓʹlʺ͹͵Ӌֵ͜yֵijNƫ С@ȡ

(2)

ʽУ  քe^yϢͣlʣA^yµ^yλƔĿ˜ ^ycλ̖

       ɅČHxԼ|̽YϵϢɽo󅢔Ʒ

           (3)

ĶӅRe}ӋģͿԱ

min (4)

   

3ӅReģ͵ⷽ

3.1 s׃߶ȷ

       Ӌģʽ(4)һsǾҎ}IJüs׃߶ȷs׃߶ȷՔɿԺmȃcõՔ[12-13]˼ǵͱƽһڷǾҎ}ʽ5ȌDһϵжҎӆ}ʽ(6)ʽ(5) ǵʽsĿ мsʽ(6)Ϙ @ЩҎӆ}Ľɸε Ȼط Mв_һSõL Ķõ Kƽ

 

min                 (5)

 

min  (6)

  

       ڼs׃߶ȷ˺ĶAϢһ㲢ֱӋA׃߶ȷʽ(7)ƘHesse ԽҎӆ}

   (7)

    

 

      

         

˴_߶Ⱦ |ý򞹫ʽ(8)~(9) [14]ԱCm Mʹ ƽHesse ??/span>WatchdogOؼgC㷨ijՔ˷WHP㷨ڵMaratosЧ}

    (8)

   (9)

3.2 ӅReģⲽE

       cһǾҎ}ͬģ(4)еʽsYcֵ}ijһ ֱӋlʺüs׃߶ȷԓģ֮ǰȰDɾģ(5)Ę˜ʽ

       IJõӅRe}ļs׃߶ȷҪӋ㲽E£

(1).    ԼС    

(2).Ӌõ 

(3)Ӌ㺯ֵcݶֵ   Ҏӆ}

(4).Ҏӆ}_µLagrange 

(5).ñOؼg_L µĽƘOСc 

(6).ՔДࣺ ͬrM ( ) ͬrM ( ) tֹͣӋõstУ7

(7).ùʽ(7)(9)Hesseꇵꇽֵ õ 

(8).k=k+1D(2)

4

       ]HܵõĴԭ^y޵ֻдlOc̎һAģBֵ픜ycˮƽAycˮƽʹֱģBϢ@Ҫ@N^yϢȫr@Ă^yֵ_wͻArʯďģEcErĿ

       D1ʾwܶc=2.4103kg/m3ɱc=0.2Arʯɱr=0.17ԪӋrȡrʯA360.0m200.0 m8cƽȅԪEc=30.0GPaEr=65.0GpaڴοՎMӋYlʺʩmģMylʺñķRewͻArʯģReYcȽoֵMб^^y`0%1%2%5%rñķӋY1ʾ^y`0%rģĿ˺Ք^D2͈D3ʾ


D1  ijΔʾD

Fig.1 cross section of a concrete dam

1 ReY

Table 1

`

Er /GPa

Ec /GPa

0%

64.909

29.874

1%

63.038~65.632

29.091~ 30.301

2%

61.760~66.989

28.497~ 30.924

5%

57.935~70.978

26.751~ 32.751

עڱv133΢CӋrg2~2.5h


D2 ģՔ^
Fig 2 convergence history of Ec and Er


D3 Ŀ˺Ք^
Fig 3 convergence history of object function

5.  YZ

       ȲƽՓӅReăģȻüs׃߶ȷˮԭ͌򞔵ReˮΉwͻArʯďģֵԇrͬr]ˌHһֻкٵ͔Լ^yrYķһƜyÌFˮԭ͌^y_ΉwͻAďԅǿе΄ӋṩЃrֵąĵķҲmһYӅRe}

 

īI

[1]_r磮̽ӑοgλƵģ[J]W199714(2)138-144

[2]ӭDŽȣԅReݶt[J]ӋWW200017169-75

[3]ӭDŽؾȣΏģReһN·[J]BWW200040(2)144-147

[4]ƽAawCģˮλصӰ[J]ӺWW199422(1) 99-101

[5]ɣ}ӷyԇYĄW[J]hˮ\̌WԺW199317(3)339-342

[6]SMl늏S΄ԇYυR[Z]֣SMl늏S1996

[7]SһЧĽYӑBRe[J]𹤳c199818(1)30-35

[8]Ժ܂sƽܽYֵ}һⷨ[J]WW199815(2)119-122

[9]Avwֵ}zӷܽYеđ[J]BWW199838(6)677-681

[10]ε[M]1981

[11]ShС܊W}[M]ϣɽ|Ƽ1993

[12]ϯأǾ[M]ߵȽ1992

[13]࿡ܝȣOPB-2ԭ[M]hAW1997

 

 

Study on identifying vibration parameters of concrete dam

WANG Deng-gang, LIU Ying-xi, LI Shou-ju

(Dept. of Eng. Mechanics, Dalian Univ. of Technol, Dalian 116024, China)

 

AbstractBased on the theory of optimal control solution, the parameters identification model was built to estimate the elastic material parameters of concrete dam according to the model data of dam prototype experiment. The priori-constrained information was considered in the present model. And the constrained variable metric algorithm was proposed to solve it. The present process was inspected through using the incomplete measuring data of the concrete gravity dam under the condition of empty reservoir. Numerical results show that the present method not only has high precision and good stability, but also has powerful capability to restrain noise of measurements. The elastic modulus of dam concrete and that of rock basement could be reliably identified only using the first order frequency and the first order vibration mode values at several fixed points in the dam. Consequently a new reliably approach to identify dynamic elastic modulus of dam concrete and that of rock basement.

key wordsvibration parametersparameter identificationconcrete gravity damconstrained variable metric algorithm

ĿȻƌWYĿ59779003


վ䛵ıߵՓģ

1A relialble approach to compute the forward kinematics of robot with uncertain geometric parameters

2Ǿ}һNϽⷨ

3rʼ͏ģą^gݷ

4ⲻ΢һNz㷨

5YɿԷą^g

PՓՈcվ<<<վȫ>>>

gӭӑՓlՓļоIĿ
(Ոڰlԕrژ}ʹcuՓĵ}Ŀо@ӷҞg[)

| CIMSՓ | й | ̓M | | Փ | Ŀ_l | WgYԴ | վȫ | MՓľWվȫ |

line.gif (4535 ֹ)

˸õĞҷgӭӱվͶƱ{

򾺲 Ոc

վ򾺲 gӭL

ע⣺վδSDd

All rights reserved, all contents copyright 2000-2019
վ20003¿WL